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Nonlincar Effects in the Collapse ol a Nearly Spherical

Cavity in a Liquid’
by

Richard B. Chapman and Milton §, Plesscoet

California Institute of Technology

1. Introduction , A significant problem in the collapse of a spherical

cavity in an infinite homogenreous liquid is the behavior of a distortion
from complete spherical symmetry. The information presently available
is based on a linearized perturbation analysis, When the analysis is made

under the assumption of axial symmetry, the boundary of the cavity,

r , may be writter: as
\;'0.
r (6,t) = R(t) +Z/ a_(t)P (cosf) (1)
n=2

where Pn(cos 0) is the Legendre polynomial of degree n. In the perturba-

tion theory it is sugposed that
la ()] «R(t) (2)

and the linearization uncouples the coefficients an(t) and gives a mean
radius R(t) which develops in tine independently of the distortion [1],
The solution to the general linearized equation for an(t) was found by
Plesset and Mitchell [ 2] for a bubble expanding or collapsing under a
constant ambient pressurc., This solution is cxpressed in terms of the
hypergeometric function, It was found for a collapsing cavity thatl, as the
mean radius approaches zero, an(t) grows in magnitude like R * and
oscillates with increasing frequency. Even a small initial asymmetry

will, therefore, become large for a sufficiently reduced cavity,

By use of the theory of Plesset and Mitchell, Naude and Ellis | 3]
analyzed their experimental obscrvations of nearly heinispher al bubbles
collapsing on a plane, solid wall, They observed that the distortions in

the bubble shapes were primarily composed of the second harmonic with
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a small contribution from the fourth harmonic, No odd harmonics should
be prcsent, of course, becausce of the planc of symmetry. Naude and
Ellis presented mecasured valuces for az(t) and a4(t) over the first half
of the collapse (1.0> R(t)> 0.5) and they observed that the values for
az(t) agreed with the predictions of the linearized perturbation solution,
Since the contribution of the second harmonic was fairly large, Naude and
Ellis found it necessary to determine the second order effect of az(t) be-
fore close agreement on the theoretical predictions for a4(t) could be

obtained,

An efficient numerical method has been developed to simulate the
collapse of an initially spherical cavity near a solid wall [4], and this
rmethod is readily adapted to the simulation of the collapse in an infinite

liquid of a nonspherical cavity with axial symmetry,

2. The Numerical Procedure. It is assumed that the flow is nonviscous

and irrotational so that it may be described by a potential, It is assumed
further that the effects of compressibility may be neglected, The col-
lapse is driven by the difference between the ambient pressure, P, and
the pressure in the cavity, P, . This pressure difference Ap = Po = Py
will be taken to be constant. When Ap is sufficiently large, surface
tension may be neglected, Under these conditions the collapse of a cavity
with a given initial shape with the mean initial radius R may be scaled
to geometrically similar cavities, Velocities will scale with the factor

(Ap/p)_z where p is the liquid density,

The calculations are based on a series of small time steps, Be-
fore each step the potential problem is solved and the velocity is calculated
at a large number of points representing the free surface of the cavity,

If the time step At is sufficiently small, the velocities will remain
relatively constant, The displacement of a free surface point with velocity

v at the beginning of the time step is approximated by
Ax - vAt g (3)

The change in the potential of the point at the free surface can be found

from Bernoulli's equation
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The rate of change of the potential of a point moving on the free surface

is

Dy _ O¢ 2

'f)—t“'a_t'_*'v ’ (5)
or

D¢ _ 1 »

B%‘—AP/P'*'Z'V ) (6)

which gives the approximation
1 2
A¢:Ap/p+2-v)At . (7)

When the bubble starts from rest, the initial time step is treated differ-
ently, Duriimg the initial time step, the velocities are small compared
with (Ap/p)z, The displacements of the free surface points are small,
and the potentials and velocities are nearly linear with time. There-

fore the potential problem is solved for the initial time step with a uniform
potential of Ap/p over the initial cavity surface and the resulting velocity
-\;' is calculated at the free surface points, Then the velocity during the

initial time step is

vEtvV o, (8)

For the initial time step the displacement and potential of a point on the

free surface is approximated by
= 1 2
Ax = -2- (Ato) v ’ (9)

and
1 2
¢ = Ato Ap/p + . (AtOV) ; (10)

.... .A mipor improvement in the method is to use the knowledge that

the increase in velocity is nearly linear during the early stage of collapse

to improve the accuracy for time steps throughout the early collapse
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instead of only for the initial time step. The following approximation is

used

Ax = %3[ (t+atf -2t . (11)

and

B¢ = (Ap/plat + ¢ [ (t+at) £ 1t (12)

3. Results of the Calculations

Two cases of initially nonspherical bubbles collapsing in a homo-
geneous liquid were simulated, For the first of these (Case A) the initial

bubble shape, described by its radius,

v (6,0)=1+ 1-16 P (cos0) (13)

was roughly that of a prolate ellipsoid, The other case (Case B) had an

oblate initial shape with a radius of
1
rs(9,0) =1 - lv ]?z(COS 8) o (14)

The liquid was assumed to oe initially at rest in both cases, A total of

seventy-six time steps were used for Case A and eighty-six for Case B,

Bubble shapes for selected time steps from Cases A and B are
shown superimposed ir Figs, 1 and 2, respectively. Table I lists the
time from the initiation of collapse for all of these shapes. The velocity
of the bubble surface on the plane of symmetry and on the axis of
metry is ‘also listed for each shape. The times are given in units of

Ro(p/Ap)_z_. The velocities are given in meters/sec for

Ap 10° dynes/cm? _ 1 atm.

P 1.0g/cm® "~ density of water (15)

Since it is of interest to compare the results of numerical simula-
tion with the linear theory, a least squares fit was used for each cavity

shape to determine the best values for the mean radius and the coefficients
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in the expansion
5

rs(G,t) = R(t) + Z am(t)Pm(cos 0) . (16)

n=1

This fit was successful except for the last few time steps, when the bub-
ble was highly distorted, Figurcs 3 and 4 show az(t), a4(t), and a (t)
as function of R(t). For comparison a.z(t) computed from the linear theory

of Plesset and Mitchell is also included,

In Case A, the initial elongation of the bubble along its axis causes
the velocity on the bubble surface to be greatest at the poles early in the
collapse, This deformation eventually causes the formation of jets on the
axis of symmetry, which have a velocitr of about 100 m/sec under the
conditions of Eq. (15) when they strike, Similarly, the velocity on the
bubble surface is a maximum at the plane of symmetry in Case B, and
the bubble assumes a '"dumbbell' shape. As the center of the bubble in
Case B constricts about the axis, the radial velocity near the plane of
symmetry grows without limit, This unbounded rise in radial velocity is
a result of the assumption of axial symmetry; a small initial distortion

lacking axial symmetry would prevent it,

According to the linearized theory, az(t)/az(O) should follow the
same curve for both Case A and Case B, and all other coefficients should
remain zero throughout the collapse, The nonlinear solution during the
first part of collapse conforms more closely to linear theory than might
be expected for an initial distortion of ten percent, During the final part
of the collapse, the nonspherical terms in the bubble shape and velocity
grow to the order of magnitude of the spherical terins, causing the higher
harmonics to be excited, The behavior of a4(t) closely follows the second
order results of Naude and Ellis (not shown here), Throughout the col-
lapses az(t) remains surprisingly close to the linear estimate, The
theory of Plesset and Mitchell predicts that az(t) will oscillate with in-
creasing frequency as the mean radius approaches zero, The distortion
in both cases is large enough, however, so that parts of the bubble strike

each other before an entire oscillation can be completed,



5. Adjustment for Finite Timc Steps

The chief source of error in these calculations is the usce of {inite
timc steps, A close estimate of this error can be made by computing
the cffect of the same time steps used in Casces A and I3 on bubbles satisfy-
ing the lincarized cquations,

In the linearized approximation to Cases A and B, the second
harmonic is the only nonspherical term in the radius of the free

boundary;

rs(G,t) = R(t) + a(t)Pz(cos 0) . (17)

It is assumed, of course, that Ia(t)l « R(t). Also, to first order the
potential on the free surface can be written as
o[ rs(G,t),O,t] = A(t) + C(t)Pz(cos 0) . (18)

By an analysis similar to that of Reference [1] it is found that, in the

linearized approximation,

C A
R=-% (19)
A = -(3% P (20)
R?
2 2
A SR e (21)
P 2 R2
and
s A|[3C Aa
C_-ﬁ(—R—+R—Z) . (22)
Thus the linearized equivalent of Eq, (3) is
AR = - 2 At ;  aa - |38 4 A2la (22)
R R R?

and the linearized equivalent of Eq. (7) is
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i
&A=&+%iﬂt; AC:é:a—q-l--é—aAt . (24)
p R? Rl R R?

Lincarized cquivalents of Eqs. (9), (10), (11), and (12) arc obvious,

Thec time steps usced in Cases A and BB were applicd to these
lincarized cquations to obtain an adjusted lincarized solution., The differ -
ence between this adjusted lincarized solution and the true linearized
solution represents the error caused by the use of finite time steps. The
adjusted linearized solution is shown with the true linearized solution and
the second harmonic determined from the nonlinear solution in Fig, 5
for Case A and in Fig, 6 for Case B. It is seen that the second harmonic
from the nonlinear solution is even closer to linear theory when the effect

of finite time steps is taken into account,

The major nonlinear effect i;; the excitation of the higher harmonics,
This nonlirear effect has an important influence on the jet in Case A as
can be illustrated by a calculation using linearized theory for the speed on
the axis of symmetry when the opposite jets strike. The result is about
193 m/s using the exact linearized solution and about 189 m/s using the
linearized solution adjusted for the finite time steps used in Case A, The
difference between these two values gives a measure of the error caused
by the finite time ster.s. Both values are almost twice the observed jet
speed in the nonlinear calculation, This difference reflects the large
contributions from the higher order harmonics in the final stages of col-

lapse,
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